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Abstract. The effective mass of a large polaron is calculated using the extended phonon
coherent state proposed in our previous paper. In the weak-coupling limit, the mass expansion
obtained can reproduce the fourth-order perturbative result. Moreover, in the intermediate-
coupling range, the calculated results are in good agreement with those of other approaches.

1. Introduction

An electron moving slowly in an ionic crystal may cause a distortion of the lattice; the
resultant ionic polarization, in turn, acts on the electron and modifies the bare-electron
properties. The electron together with its surrounding distortion is known as a polaron and
a model for such a system can be investigated using Fröhlich Hamiltonian [1]:

H = − 1

2m
∇2 +

∑
q

ω0a
†
qaq +

∑
q

M0

ν1/2|q| (aqeiq·r + a†
qe−iq·r) (1)

wherem is the electron band mass,ω0 is the frequency of the LO phonons,a†
q andaq are

respectively the creation and annihilation operators for the LO phonons with the wave vector
q, ν is the crystal volume, andM0 = [4παω

3/2
0 /(2m)1/2]1/2 (hereα is the electron–phonon

coupling constant).
The Fr̈ohlich polaron has been a subject of interest for a very long time due to the many

theoretical and practical implications. Various methods in many-body physics have been
applied to this problem (see reviews [2]). It is well known that the variational Feynman
path integral method [3] is particularly successful in evaluating the polaron ground-state
energy and effective mass for all values of the coupling constants. This method is still used
to check new approaches andansatze.

The polaron mass is an important quantity which can associate experimental results
with theoretical studies where various fundamental assumptions are made. Hence, many
investigations have been devoted to this problem to date (an incomplete list is given by
[3–10]). In the weak-coupling limit, within the fourth-order perturbation theory [4], Höhler
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and Müllensiefen first calculated the expansion of the polaron effective mass in terms ofα;
Seljugin and Smondyrev further presented this expansion to greater accuracy:

m∗ = 1 + α/6 + 0.023 627 63α2. (2)

This result was also obtained by Röseler [5] and Larsen [6] using different variational
approaches and has been accepted as the best result for a long time.

On the other hand, in the intermediate-coupling range, it is in our opinion difficult to
decide on which approach has given the best results for the effective mass—unlike the case
for the ground-state energy. The reasons for this are twofold. First, it cannot be proved
that the variational result for the mass is an upper (or lower) bound for the exact value.
Second, there are several definitions of the polaron mass in the literature (one might refer to
[10] and [11]). Despite the fact that convincingly good results for the effective mass in the
intermediate-coupling range are still lacking, we can judge a new approach by comparison
with the often-quoted results, such as those from various path integral approaches [3, 7–9].

As is well known, almost all methods developed in polaron physics can be extended
to the calculation of the polaron effective mass. In this paper we will follow our previous
method [12] for calculating the polaron effective mass. We had calculated the polaron
ground-state energy by a nonvariational method [12] where an extended phonon coherent
state was proposed, and the results obtained are in close agreement with the recent Monte
Carlo ones. In order to calculate the polaron effective mass, we will keep the total polaron
momentumQ in all procedures. Consequently, we derive a self-consistent integral equation
from which the energy of a moving polaron can be obtained. In the weak-coupling limit, we
analytically calculate the expansion of the effective mass in powers of the coupling constant.
Most importantly, we solve the integral equation numerically by an iteration method and
evaluate the polaron effective mass for a wide range of the coupling constant. Finally, the
present results will be compared with those from other approaches.

2. Integral equation

As before, we first apply the canonical transformation of Lee, Low, and Pines (LLP) [13]
to the Hamiltonian (1) and adopt the units 2m = ω0 = 1, which gives

H =
(

Q −
∑

q

qa†
qaq

)2

+
∑

q

a†
qaq +

∑
q

vq(a
†
q + aq) (3)

wherevq = √
4πα/ν1/2|q|.

Then, we take the phonon state as the following coherent state:

| 〉0 =
∏
q′

eα(q′)a†
q′ |0〉 aq| 〉0 = α(q)| 〉0. (4)

The Schr̈odinger equation for| 〉0 is

E| 〉0 = Q2 +
∑

q

(1 − 2Q · q + q2)α(q)a†
q| 〉0 +

∑
q

vqα(q)| 〉0 +
∑

q

vqa
†
q| 〉0 (5)

where we have neglected the(a†)2-term. Equating the coefficients of(a†)0 and(a†)1 yields

α(q) = − vq

1 − 2Q · q + q2
(6)

E = Q2 +
∑

q

vqα(q). (7)
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By inserting equation (6) into equation (7) and replacing the discrete summation by a
continuous integral, the energy of moving polaronE(Q) can be obtained as

E(Q) = Q2 −
∫ ∞

0
dq

∫ π

0
dθ

α sinθ

π(1 − 2Qq cosθ + q2)
. (8)

If we set the polaron momentumQ equal to zero, we getE0 = −α. This is just the well
known result for the ground-state energy in second-order perturbation theory.

In this paper, the effective mass of a slowly moving polaron is defined as

m∗ = 1
1
2(∂2/∂Q2)E(Q)|Q=0

(2m = 1). (9)

This is one of several definitions given in [11], and has usually been employed in approaches
developed on the basis of the LLP transformation [13].

After substituting (8) into (9) we obtain the effective mass of polarons easily:

m∗ = 1 + α/6. (10)

This is identical to the second-order perturbative result for the effective mass [4].
To calculate the polaron effective mass more accurately, we will follow our previous

approach as fully discussed in [12]. It is straightforward to improve the phonon state (4) to
the following extended coherent-state form:

| 〉 = | 〉0 +
∑
q1,q2

b(q1, q2)a
†
q1

a†
q2

| 〉0 (11)

where b(q1, q2) is the interchanging symmetrical function ofq1 and q2, and will be
determined below. Physically, it is implied in equation (11) that correlations between
wave vectors of pairs of emitted phonons in the field are under consideration.

We will omit the detailed procedures, which are the same as in [12], and present the
following three identities directly:

E = Q2 +
∑

q

vqα(q) (12)

vq + (1 − 2Q · q + q2)α(q) + 2
∑
q′

vq′b(q′, q) = 0 (13){∑
q

vqα(q) − E + Q2 + [2 − 2Q · (q1 + q2) + q2
1 + q2

2] + 2q1 · q2

}
b(q1, q2)

= − q1 · q2 α(q1)α(q2). (14)

According to equations (12) and (14) it can be seen thatb(q1, q2) satisfies

b(q1, q2) = − q1 · q2 α(q1)α(q2)

2 − 2Q · (q1 + q2) + (q1 + q2)2
. (15)

Inserting equation (15) into equation (13) we get the self-consistent equation obeyed by
α(q):

α(q) = − vq

1 − 2Q · q + q2
+ 2

1 − 2Q · q + q2

∑
q′

vq′
q · q′ α(q)α(q′)

2 − 2Q · (q1 + q2) + (q + q′)2
.

(16)

It remains to obtainE(Q) from equations (12) and (16). Obviously, it is more
difficult to solve these equations than in the previous calculation of the ground-state energy,
due to the presence of the vectorQ. Note that the expression forα(q) should include
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the angleθ between the vectorsQ and q. Without loss of generality, we selectQ
to be along thez-axis, and suppose thatQ and q are in they–z plane; therefore the
coordinates of the vectorsQ, q, andq′ can be expressed as(0, 0, Q), (0, q sinθ, q cosθ),
and (q ′ sinθ ′ cosϕ′, q ′ sinθ ′ sinϕ′, q ′ cosθ ′). The relevant scalar products of these vectors
are given by

Q · q = Qq cosθ

Q · q′ = Qq ′ cosθ ′

q · q′ = qq ′(sinθ sinθ ′ cosϕ′ + cosθ cosθ ′).
(17)

Next, converting the summation
∑

q′ in equation (16) into an integration

(ν/(2π)3)

∫
dq′

and performing theϕ′-dependent integration over the interval [0, 2π ] analytically gives

α(q, θ) = − vq

1 − 2Qq cosθ + q2
+ ν

4π2(1 − 2Qq cosθ + q2)

×
∫ ∞

0
dq ′

∫ π

0
dθ ′ q ′2 sinθ ′vq′α(q, θ)α(q ′, θ ′)

×
{

1 − A√
[A + 2qq ′ cos(θ + θ ′)][A + 2qq ′ cos(θ − θ ′)]

}
(18)

whereA = 2 − 2Q(q cosθ + q ′ cosθ ′) + q2 + q ′2. Here we have used the definite integral
formula ∫ π

0

dx

a + b sinx
= π√

a2 − b2
(if a2 > b2).

It should be mentioned that the inequality condition in the brackets is met automatically for
smallQ in the treatment of the effective mass, so this formula can be used straightforwardly.

For simplicity, we introduce the following function:

F(q, θ) = ν

(2π)2
q2 sinθ vqα(q, θ). (19)

Thus, equations (12) and (16) can be respectively reduced to

E = Q2 +
∫ ∞

0
dq

∫ π

0
dθ F (q, θ) (20)

F(q, θ) = − α sinθ

π(1 − 2Qq cosθ + q2)
+ 1

1 − 2Qq cosθ + q2

×
∫ ∞

0
dq ′

∫ π

0
dθ ′ F(q, θ)F (q ′, θ ′)

×
{

1 − A√
[A + 2qq ′ cos(θ + θ ′)][A + 2qq ′ cos(θ − θ ′)]

}
. (21)

It is seen that equation (21) is the self-consistent integral equation obeyed byF(q, θ),
and equation (20) can be used to calculate the energy of a moving polaronE(Q) if we
actually solve forF(q, θ). Some analytical and numerical results are presented in the next
section.
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3. Results and discussion

It can be seen that, if the second term in the right-hand side of equation (21) is disregarded,
we have

F(q, θ) = − α sinθ

π(1 − 2Qq cosθ + q2)
. (22)

Inserting equation (22) into equation (20), equation (8) is then recovered. For further
iteration, substituting equation (22) into the right-hand side of equation (21), followed by
insertion of the resultant new expression forF(q, θ) into equation (20) and performing of
the multiple integrations, leads to the energy with a small momentumQ given as follows:

E(Q) = −(α + 0.015 9196α2) + (1 − α/6 + 0.004 150 15α2)Q2 + O(Q4). (23)

It is interesting to note that the previous expansions of the ground-state energy up to the
α2-term emerge in their entirety in the first brackets in the right-hand side of equation (23),
which is just the fourth-order perturbative ground-state energy [4]. Consequently, on
inserting equation (23) into equation (9), we get the polaron effective mass as follows:

m∗ = 1 + α/6 + 0.023 627 63α2. (24)

This is simply the previous fourth-order perturbative result for the effective mass of
equation (2) mentioned above. For the next iteration, we would have the polaron effective
mass expansion up to theα3-term. To the best of our knowledge, the effective mass in
sixth-order perturbation theory has not been calculated to date. On the other hand, the
α3-term in the mass expansion in this paper is not completely calculated either, because
we used an approximate wave function (11). Hence it is pointless to write this term down.
Note that such a procedure can be performed step by step; generally speaking, we could
obtain the following expansion of the effective mass in powers ofα analytically:

m∗ = 1 + α/6 + 0.023 627 63α2 +
∞∑

k=3

Ckα
k. (25)

It is clear that the infinite-iteration technique can be used to solve the self-consistent
integral equation (21) numerically. Solving forF(q, θ), with the help of equations (20)
and (9), we can calculate the polaron effective mass for a wide range of coupling constant,
not merely in the weak-coupling limit. By the way, on setting the polaron momentum to
Q = 0, our previous results for the ground-state energy would be obtained naturally.

Table 1. The comparison of some results for the polaron effective mass as a function of the
coupling constant up toα = 4. (The notation is defined in the text.)

α m∗ m∗
F m∗

LR m∗
AFR m∗

GLS m∗
SQZ m∗

PT 4

1 1.195 1.196 1.194 1.196 1.196 1.194 1.190
2 1.476 1.472 1.465 — 1.476 1.442 1.428
3 1.909 1.889 1.868 1.824 1.900 1.744 1.713
4 2.725 2.579 2.526 — 2.606 2.102 2.045

In this paper, we calculate the polaron effective mass for a wide range of the coupling
constant numerically up toα = 4. In order to test our method, we compare the present
results with often-quoted ones. In table 1, in addition to the present results, various path
integral results are also collected together. The Feynman effective mass (m∗

F ) calculated
by Schultz (see [3]) is listed in the third column, and the second-order correction to the
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Feynman effective mass given by Lu and Rosenfelder [9] (m∗
LR) and the recent Monte

Carlo results obtained by Alexandrouet al [8] (m∗
AFR) are displayed in the fourth and fifth

columns respectively. In the sixth column, we list the results of Gerlachet al [7] (m∗
GLS),

which were calculated from the ground-state energy by means of a different definition in the
framework of the path integralansatz. We also present the effective mass calculated with a
two-mode squeeze state by Kandemir and Altanhan [10] (m∗

SQZ) and using the fourth-order
perturbation theory (m∗

PT 4) in the last two columns.
It is demonstrated in table 1 that our results are very close to the results of Gerlachet

al [7], and agree with the Feynman ones (see [3]) and their second-order corrections [9]
for α 6 4. Even atα = 4, our results are only higher than these results by about 5%. We
have also calculated the effective mass forα > 4 and find that our results deviate more and
more from the well known results. This is to say, our approach to the calculation of the
effective mass is not valid forα > 4 and its validity range is slightly smaller than that in
the calculation of the ground-state energy. It is indicated that the effective mass is a more
sensitive quantity than the energy as regards evaluation by our approach.

It is interesting to note that, in the intermediate-coupling range, our results are a little
higher than those obtained by various path integral approaches except the Monte Carlo ones.
In our opinion, this may be partly attributed to the fact that the definition of the effective
mass is not well founded in the path integralansatz, unlike that of the ground-state energy.
By the way, the results for the mass obtained with the two-mode squeeze state and in
the fourth-order perturbation theory depart from the common behaviour of the well known
results more drastically with the increasing of the coupling constant, as is also shown in
table 1.

We would like to add a few remarks about the results from various path integral methods
and the present ones. Recently, Luet al have made second-order corrections to the Feynman
effective mass. But the corrections stay very small over the whole coupling range, from
which it follows that the Feynman effective mass remains an elegant one against which to
check the results obtained by other approaches. Fortunately, our results for the mass are in
agreement with the Feynman ones for a wide coupling range. As regards the large-scale
Monte Carlo calculations [2, 8], in our opinion the exact results obtained for the effective
mass should be restricted to the weak-coupling range due to the insufficient convergence
in the intermediate-coupling range. It is likely that the effective mass is also a much more
sensitive quantity than the ground-state energy as regards stochastic Monte Carlo calculation.

It is very important to link the average number of virtual phonons to the validity range
of our method in the calculation of the effective mass. Forα = 4, the average number of
virtual phonons is roughly estimated to be two by means of the simple approximate relation
N = α/2, which is the well known LLP result [13]. Physically, if the average number of
particles in the field is less than two, it is sufficient to consider correlations of the vectors
of pairs of virtual phonons. Fortunately, from the above discussions, this is exactly the
case—at least for the effective mass. It can be predicted that if the correlations of the wave
vectors of more than two phonons are taken into account, the validity range will be enlarged
further. By the way, the difference between the present and the unknown exact results in
the intermediate-coupling range may be attributed to an inadequacy of the present approach.

Finally, on the basis of the above discussions, it can be concluded that our previous
approach is also suited to the calculation of the polaron effective mass, which again
underlines the effectiveness of our approach in polaron physics. It should be pointed out
that this well developed approach could also be useful in other polaron-like problems.
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[1] Fröhlich H 1954Phil. Mag. Suppl.3 325
[2] Mitra T K, Chatterjee A and Mukhopadhyay S 1987Phys. Rep.153 91

Alexandrou C and Rosenfelder R 1992Phys. Rep.215 1
[3] Feynman R P 1955Phys. Rev.97 660

Schultz T D 1959Phys. Rev.116 526
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